Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Kazuma Gotoh, ${ }^{\text {a }}$ Youhei

Tabuchi, ${ }^{\text {a }}$ Haruo Akashi ${ }^{\text {b }}$ and Hiroyuki Ishida ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan, and ${ }^{\mathbf{b}}$ Research Institute of Natural Sciences, Okayama University of Science, Okayama 700-0005, Japan

Correspondence e-mail:
ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Carboxypyridinium hydrogen chloranilate monohydrate

The title compound (systematic name: 4-carboxypyridinium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate monohydrate), $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, is a monohydrate salt of chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) with isonicotinic acid (pyridine-4-carboxylic acid), in which an acid-base interaction involving a proton transfer is observed from the chloranilic acid to the pyridine group of isonicotinic acid. In the crystal structure, the 4 -carboxypyridinium cation, the hydrogen chloranilate anion and the water molecule are held together through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a chain. The chains are further linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional hydrogen-bond network.

Comment

The title compound, (I), was prepared in order to extend our study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D=\mathrm{N}, \mathrm{O}$, or $\mathrm{C} ; A=\mathrm{N}$, O or Cl) in chloranilic acid-amine $1: 1$ and $1: 2$ systems (Tabuchi et al., 2005). Chloranilic acid is attractive as a template for generating tightly bound self-assemblies with polarizable bases, as well as a model compound for investigating proton-transfer motions in intermolecular hydrogen bonds by ${ }^{1} \mathrm{H}$ NMR and ${ }^{35} \mathrm{Cl}$ NQR techniques (Ikeda et al., 2005).

(I)

The asymmetric unit in the title compound, (I), contains a 4carboxypyridinium cation, a hydrogen chloranilate anion and a water molecule; an acid-base interaction involving a proton transfer is observed between the chloranilic acid and the isonicotinic acid through the water molecule and these three molecules are held together by $\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 7, \mathrm{O} 7-\mathrm{H} 8 \cdots \mathrm{O} 4$ and $\mathrm{C} 11-\mathrm{H} 6 \cdots \mathrm{O} 1$ hydrogen bonds (Fig. 1 and Table 1). The three components are further connected by three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left[\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 7^{\mathrm{i}}, \mathrm{O} 5-\mathrm{H} 7 \cdots \mathrm{O} 3^{\mathrm{ii}}\right.$ and $\mathrm{O} 7-$ H9..OO6 ${ }^{\text {iiii }}$; symmetry codes (i)-(iii) are given in Table 2], resulting in a hydrogen-bonded chain running along the [110] direction (Fig. 2). Atom H1 is also involved in an intramolecular hydrogen bond with O3. Neighboring chains related

Received 4 September 2006
Accepted 8 September 2006
by an n-glide plane to each other are linked through the water molecule, forming a three-dimensional hydrogen-bond network. Besides the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, there are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the chains.

Experimental

Crystals were obtained by slow evaporation of an ethanol solution of chloranilic acid with isonicotinic acid in a 1:1 molar ratio (0.200 and 0.118 g for chloranilic acid and isonicotinic acid, respectively).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
 $M_{r}=350.11$
 Monoclinic, $P 2_{1} / n$
 $a=12.9472$ (3) \AA
 $b=7.7206$ (2) A
 $c=13.8128$ (3) \AA
 $\beta=93.4766(11)^{\circ}$
 $V=1378.19(6) \AA^{3}$

Data collection

Rigaku R-AXIS-IV diffractometer ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.779, T_{\text {max }}=0.859$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.687 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.51 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Prism, brown } \\
& 0.50 \times 0.40 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.092$
$S=1.08$
3041 reflections
220 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 7$	0.89 (3)	1.90 (2)	2.7286 (19)	154 (2)
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.84 (3)	2.10 (3)	2.6073 (16)	119 (2)
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 7^{\mathrm{i}}$	0.84 (3)	2.08 (3)	2.8175 (17)	146 (2)
$\mathrm{O} 5-\mathrm{H} 7 \cdots 3^{\text {ii }}$	0.89 (3)	1.68 (3)	2.5633 (17)	175 (3)
O7-H8...O4	0.80 (3)	1.97 (3)	2.7542 (18)	166 (3)
O7-H9 . . $\mathrm{O}^{\text {iii }}$	0.88 (3)	2.02 (3)	2.8799 (18)	165 (3)
$\mathrm{C} 7-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iv }}$	0.93	2.31	3.168 (2)	153
$\mathrm{C} 10-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {v }}$	0.93	2.40	3.3063 (19)	164
C11-H6 . O 1	0.93	2.36	2.9989 (19)	126

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x+1, y-1, z$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2} ;(\mathrm{v})-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

H atoms attached to O and N atoms were found in a difference Fourier map and refined isotropically (refined distances given in Table 1). Other H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure

Figure 1
The asymmetric unit of (I), with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines.

Figure 2
A partial packing diagram, viewed approximately along the b axis, showing the hydrogen-bonded chain and hydrogen-bonding scheme around the water molecule. Dashed lines show $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [symmetry codes: (ii) $1+x, y-1, z$; (vi) $\left.\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}\right]$.
(Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 16550014) from the Japan Society for the Promotion of Science.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ikeda, R., Takahashi, S., Nihei, T., Ishihara, H. \& Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241-1245.
Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure (Version 3.7.0). Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. \& Ishida, H. (2005). Acta Cryst. E61, o4215-o4217.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

